今天是1024程序员节日!!!
最近借助网上的博客阅读了一下ConcurrentHashMap类,再加上自己的一些见解。 参考sun.misc.Unsafe详解 参考红黑树详解
ConcurrentHashMap简介
ConcurrentHashMap不同于HashMap,虽然都是Map的实现类,但是ConcurrentHashMap支持并发操作,也就是它的动作是具有原子性的。那么我们可以将它作为全局变量来使用,可以用来共享小规模的数据。
数据结构:
Node数组+链表 / 红黑树: 类似hashMap
ConcurrentHashMap<String, Object> concurrentHashMap = new ConcurrentHashMap<String, Object>();
put方法
public V put(K key, V value) {
return putVal(key, value, false);
}
//onlyIfAbsent为true时,不会覆盖已有的key的value
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//spread方法将hash值进行二次散列 并且是正数
int hash = spread(key.hashCode());
//记录链表长度,用于自动扩容
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
//初始化相互独立的Node空数组(默认size:16)
tab = initTable();
//tabAt执行前根据hash值随机摇一个在Node数组长度范围内的下标i,tabAt返回根据下标在内存中获取到的Node对象,
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//获取不到Node对象就创建存入
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
//如果摇到相同的下标会进入这里
V oldVal = null;
加锁
synchronized (f) {
//再次验证数据没变
if (tabAt(tab, i) == f) {
//大于零表示是Node形成的链表,小于零表示可能是红黑树(TreeBin构造函数里默认将hash初始化为-2,hash特殊值的含义可以查看594行源码)
if (fh >= 0) {
binCount = 1;
//遍历Node链表,有就修改,没有就在链表末尾next一个Node对象存入
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//hash值小于零判断是否是红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//进行红黑树的put操作
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
//Node链表长度大于8就进行扩容或者链表转红黑树
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
-
initTable() -
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { //sizeCtl小于零表示有其他线程执行到下面的else if,Thread.yield()表示线程让步 if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin //成功将sizeCtl修改为-1后进入else if else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; //sc=n*0.75 sc = n - (n >>> 2); } } finally { //扩容阈值或者转红黑树阈值 0.75n sizeCtl = sc; } break; } } return tab; }
-
treeifyBin() -
private final void treeifyBin(Node<K,V>[] tab, int index) { Node<K,V> b; int n, sc; if (tab != null) { //Node数组长度小于64就进行数组扩容 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); 判断Node存在并且是链表, else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { //验证数据是否改变 if (tabAt(tab, index) == b) { TreeNode<K,V> hd = null, tl = null; //遍历对应的链表,转化为红黑树覆盖存入 for (Node<K,V> e = b; e != null; e = e.next) { TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<K,V>(hd)); } } } } }
-
tryPresize() -
//参数size=Node数组的两倍 private final void tryPresize(int size) { //如果size大于或等于限定最大值的一半 c=限定最大值:(size的1.5倍,再加1,再往上取最近的2的n次方) int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<K,V>[] tab = table; int n; //这里和initTable()代码块一样 if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } } //如果不满足扩容条件就停止扩容(执行上面的if可能会出现) else if (c <= sc || n >= MAXIMUM_CAPACITY) break; else if (tab == table) { //resizeStamp方法返回 2的15次方+(n的二进制前置补零个数) int rs = resizeStamp(n); //当sizeCtl<0时 表示正在扩容 if (sc < 0) { Node<K,V>[] nt; //检查扩容的一些属性是否正常(是否在扩容中),参数不对或已完成扩容就break if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; //原子操作sizeCtl+1(扩容中的sizeCtl是一个非常大的负数,sizeCtl+1表示有一个线程加入扩容任务) if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) //协助扩容 transfer(tab, nt); } //当sizeCtl>0时,修改sizeCtl值为一个非常大的负数 else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); } } }
-
transfer() -
//迁移是从根据Node数组下标从后往前迁移,由原Node数组迁移至新Node数组,迁移任务会根据Node数组长度分成多段执行,每段长度是根据cpu计算出来的步进长度,最小步进值为16 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { int n = tab.length, stride; //根据cpu线程数计算出一个步进长度,最小值为16 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range //初次调用时会初始化2n长度的Node数组,扩容完后会重新置为null if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; //在原Node数组每迁移完一个Node元素就用此元素覆盖,用于标记已完成迁移 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); 迁移一个元素前advance=false,迁移完一个元素后advance=true boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0;;) { Node<K,V> f; int fh; while (advance) { int nextIndex, nextBound; //--i >= bound说明在迁移中 if (--i >= bound || finishing) advance = false; //transferIndex<=0表示迁移完成或终止 //transferIndex用于标记迁移进度 else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } //原子操作transferIndex减去一个步进长度或者置为0 else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { //bound表示当前迁移任务步进到哪个下标 bound = nextBound; //i表示准备迁移的元素下标 i = nextIndex - 1; advance = false; } } //迁移完成或者i有问题时进入 if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; //sizeCtl = 2n*0.75,修改sizeCtl为正数阈值 sizeCtl = (n << 1) - (n >>> 1); return; } //原子操作更新sizeCtl-- if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { //不等于迁移前赋值的负数就直接return //等于迁移前赋值的负数就表示迁移完成 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } } //跳过下标为i的Node,并标记为已迁移 else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); //已经迁移的跳过 else if ((fh = f.hash) == MOVED) advance = true; // already processed else { synchronized (f) { if (tabAt(tab, i) == f) { Node<K,V> ln, hn; if (fh >= 0) { int runBit = fh & n; Node<K,V> lastRun = f; //此for遍历链表所有元素 //lastRun记录链表在该Node后所有的Node的(hash & n)相同,没有相同则是最后一个Node for (Node<K,V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } //不知道为啥要分为0和其他数 if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } //此for遍历链表元素到lastRun元素 for (Node<K,V> p = f; p != lastRun; p = p.next) { int ph = p.hash; K pk = p.key; V pv = p.val; //把ph & n == 0的分为一个链表 if ((ph & n) == 0) ln = new Node<K,V>(ph, pk, pv, ln); //把ph & n != 0的分为一个链表 else hn = new Node<K,V>(ph, pk, pv, hn); } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } else if (f instanceof TreeBin) { TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> lo = null, loTail = null; TreeNode<K,V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<K,V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<K,V> p = new TreeNode<K,V> (h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<K,V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<K,V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } }